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Introduction and Motivation



Geometry of 4d N = 2 VOAs

Recall the 4d N = 2 SCFT/VOA correspondence [Beem, Lemos, Liendo, Rastelli, Peelaers, van Rees]

V : {4d N = 2 SCFT } → {Vertex Operator Algebra (VOAs) }

Given a VOA V , let XV be the associated variety [Arakawa] constructed from Zhu’s

c2-algebra [Zhu]

XV := Specm(RV ) , V 7→ RV := V /c2(V )

Expected geometry of 4d N = 2 VOAs

• XV(T )
∼= MH(T ) (the Higgs branch) as a Poisson variety (∴ V(T ) is

quasi-lisse) [Beem, Rastelli]

• V(T ) is expected to have free field realisations modelled on the low-energy

theory on MH(T ) [Beem, Meneghelli, Rastelli]

It is often difficult to systematically construct these free field realisations,

unless one works with sheaves of VOAs [Arakawa,Kuwabara,Malikov],[Kuwabara],[Arakawa,Kuwabara,Möller]
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Geometry of 3d N = 4 VOAs

Recall the 3d N = 4 boundary VOA construction [Costello, Gaiotto], a generalisation

of the TQFT/WZW correspondence [Witten]

VA × VB : {3d N = 4 SQFTs } → {VOAs}A × {VOAs}B

This map depends on boundary degrees of freedom used to cancel gauge

anomalies. With appropriate choices (boundary fermions) we conjecturally have

that:

Expected geometry of 3d N = 4 VOAs

• XVA/B (T )
∼= MH/C (T ) (the Higgs/Coulomb branch) as a Poisson variety

(∴ VA/B(T ) is quasi-lisse) [Beem, AEVF][Coman, Shim, Yamazaki, Zhou]

• As in CS/WZW, bulk lines are expected to form a braided monoidal

category of modules CA/B(T ) for the boundary VOA V(T ), and so

Specm(ExtCA/B (T )(1, 1)) ∼ MC/H(T ) [Costello, Creutzig, Gaiotto][Creutzig, Dimofte, Niu]...
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Geometry of 3d N = 4 VOAs

Thus, in 3d there are two (Poisson,

...) varieties (schemes, ...) MC (T ),

MH(T ) controlling VOAs in differently

powerful ways. These varieties are ex-

pected to be symplectic dual pairs. [Braden,

Licata, Proudfoot, Webster]...
VA/B(T )

MH/C(T )

MC/H(T )

Remark

• It is necessary for MH(T ), MC (T ) to be finite sets of points for VB/A(T )

to be rational.

• Probably also sufficient if CA/B(T ) is rigid.

• New insights on rational non-unitary VOAs [AEVF, Garner, Kim], ... based on [Gang,

Yamazaki]...
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Geometry of 3d N = 4 VOAs

And of course we have 3d mirror symmetry

{MC (T ),MH(T )} ↔ {MH(T ∨),MC (T ∨)}

Expectations, rephrased

Given a 3d N = 4 theory T with a mirror T ∨

• One can extract a symplectic dual pair from any single VOA V...(T ...)

(done in examples [AEVF, Suter])

• Pairs (VA(T ),VA(T ∨)) (or equivalently (VB(T ),VB(T ∨)) ) have “mirror

features”. Associated varieties and identity self-exts are swapped, and so

are inner/outer automorphisms.

This is a remarkable playground. Today, I will focus on some elementary yet

(physically, mathematically) interesting examples of hypertoric VOAs arising as

VA(T ) for 3d Abelian gauge theories T .
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Quasi-lisse hypertoric VOAs form 3d

N = 4



3d N = 4 Abelian Gauge Theories and Hypertoric varieties

3d N = 4 Abelian gauge theories are defined by a gauge group G = U(1)k and

a representation T ∗R, where we take R = CN to be a faithful representation.

The Higgs branch is by definition the hypertoric variety [Bielawski, Dancer],[Proudfoot]

MH := T ∗CN///G ,

which we view as a holomorphic symplectic quotient

MH = Spec[C[µ−1
C (0)]GC ] .

The data defining the theory/representation can be encoded into a (split) SES

0 → tG
QT

−→ tR
Q̃−→ tF −→ 0 ,

where Q contains the weights of the action. Mirror symmetry is Gale duality

[Gale],[Proudfoot, Webster]...

Q ↔ Q̃

Straightforward to compute MC and check mirror symmetry [Bullimore, Dimofte,

Gaiotto],[Braverman, Finkelberg, Nakajima].
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3d N = 4 Abelian Gauge Theories and Hypertoric varieties

Here is a fundamental mirror example. Let

Q =
(
1 1 · · · 1

)
, Q̃ =


1 −1 0 · · · 0

0 1 −1 0 · · · 0

· · · · · · · · · · · ·


Then

MH(T ) ∼= Ōmin(sl(N,C)∗) , MC (T ) ∼= C2/ZN .

If C[T ∗CN ] is generated by (Xi ,Y
i ), then

• C[Ōmin(sl(N,C)∗)] is generated by rank-1 matrices

M(X ,Y ) = {XiY
j}ij

where M2 = 0 due to µC =
∑

i XiY
i = 0.

• C[C2/ZN ] is generated by

W = X1X2 · · ·XN−1 , Z = Y 1Y 2 · · ·Y N−1 , U =
∑
i

XiY
i .
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3d N = 4 Abelian Gauge Theories and Hypertoric varieties

I will use some elementary facts about the geometry of hypertoric varieties.

One is the existence of a map

µH : MH(T ) → t∗F ∼= RN−k

with generic fibre (R2 × S1)N−k that degenerates along hyperplanes normal to

the columns of Q̃, whose location is prescribed by deformation parameters

ζ ∈ t∗G

ζ

µ1
H

µ2
H
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3d N = 4 Abelian Gauge Theories and Hypertoric varieties

Another, related fact is that one may find openly embedded subsets of the form

T ∗(C×)N−k ↪→ MH,ζ .

by considering the reduction of certain subsets T ∗(C×)N ↪→ T ∗(C)N .

Lemma

Let ϵ ∈ {±}N , and T ∗Uϵ ↪→ T ∗CN , T ∗Uϵ ∼= T (C×)N with the origin of the

base/fibre of the i-th copy of T ∗C removed if ϵi = +/−. Then

T ∗Uϵ//GC ∼= T ∗(C×)N−k .

Moreover, there is a choice of resolution parameter ζ ∈ (t∗G )
k such that

T ∗Uϵ//GC ↪→ MH,ζ .
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

Given such a theory T , the boundary VOA VA(T ) can be defined as a

super-chiralisation of the Higgs branch symplectic quotient [Costello,Gaiotto]

• Boundary values of bulk fields (βi , γ
i ) = (Xi (t = 0),Y i (t = 0))

• Boundary fermions (ξi , χi ) of same charge

• Gauging is performed by introducing k weight (0, 1) bc-ghost systems and

taking (relative) BRST cohomology with respect to a rank-k Heisenberg

algebra ĵ

J a =
N∑
i=1

Qa
i (βiγ

i + ξiχi ) , J =
k∑

a=1

J aca , d = J0

More formally, this can be expressed in terms of the relative semi-infinite

cohomology [Voronov]

H
∞
2
+•
(̂
j, j0, Sb

N ⊗ FfN ⊗ (bc)k
)
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

Only Heisenberg fields embedded in the free fermions are responsible for a

cancellation of the anomaly

J a
Heis =

N∑
i=1

Qa
i (βiγ

i + Jhi ) , J =
k∑

a=1

J a
Heisca

Rank-k Abelian Heisenberg fields Heisk , have associated variety

XHeisk
∼= Ck ,

which parametrises Poisson deformations. Using this anomaly cancellation, in

[Kuwabara], Kuwabara constructed sheaves of ℏ-adic vertex algebras on families of

Poisson deformations of hypertoric varieties

MHeis
H → Ck .

In general, the global sections of these sheaves have not MH as an associated

variety (even not MHeis
H ), and they are not quasi-lisse.
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

We can use free fermions instead to build sheaves [Arakawa,Kuwabara,Möller],[Coman et

al.][Arakawa,AEVF,Möeller in progress], see Sven’s talk in a few hours!.

Here we take a shortcut to characterise the global sections [Beem, AEVF] –by using

an analogue of the above Lemma, based a chiral equivalent of the localisation

T ∗C× ⊂ T ∗C [Friedan, Martinec, Shenker].

Chiral localisation

For (σ, σ) = −(ρ, ρ) = 1, introduce Heisenberg Then

i± : Sb ∼= Dch(C) ↪→ Dch(C×)

i+ : (β, γ) 7→ (e(ρ−σ), Jρe
−ρ+σ)

i− : (β, γ) 7→ (−Jρe
(−ρ+σ), eσ−ρ)

where we have inverted either β (X ) or γ (Y ).

Images of i± are kernel of screening operators s±:

Dch(C) ↪→ Dch(C×)
s±−→ F± , s± = Resz=0(e

ρ·) .
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

Given SbN ×FfN and a sign vector ϵ ∈ {±}N , we bosonise everything (fermions

with (γ, γ) = 1) to N half-lattices and N lattices

iϵ : Sb
N × FfN ↪→

⊕
m,n∈ZN

emσe−mρ ⊗ enω

and subdivide the lattice directions into directions that pair (∼ Qa
i ϵi ) and do

not pair (∼ Q̃ iϵi ) with the BRST operator

iϵ(J a) =
N∑
i=1

Qa
i ϵi (Jσi + Jγi ) .

Then since the screening charges commute with the BRST operator, we can

compute the BRST cohomology on the bosonised space.

• By a theorem of Voronov [Voronov], it follows that the cohomology is

concentrated in degree zero

• The bosonic free fields that survive BRST can be interpreted as

Dch(Uϵ) ∼= Dch((C×)N−k).
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

More formally, but still schematically, the result is as follows

Quasi-lisse Hypertoric VOAs [Beem, AEVF], [Ballin, Creutzig, Niu , Dimofte]

Let

H = ZN/(QT
ϵ Zk ⊕ Q̃T

ϵ ZN−k) .

VA(T ) is the joint kernel of N screening coperators acting on VFFR(T )

VFFR(T ) ∼=
⊕
h∈H

⊕
m//,m⊥,n⊥

[m//]=[n//]=[n⊥]

em//ρ//+m⊥ρ⊥ ⊗ e−n⊥σ⊥ ⊗ em⊥ω⊥

Remark:

• Unlike in 4d , due to the symplicity of the BRST reduction families of free

field realisations are computed systematically

• Geometric analyses of these free field realisations support the conjecure

XVA(T )
∼= MH(T )

• Expressions for the screening operators are fully explicit
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3d N = 4 Abelian Gauge Theories and Hypertoric VOAs

At least in examples, it is also possible to write down candidates for (weak)

generators. This is because the chiral rings of the Higgs branches are under

reasonable control.

• In the chiral rings one finds N − k complex flavour moment maps

µa
H,C =

N∑
i=1

qa
i XiY

i

• For any co-character A of the mirror gauge group, a monomial W A (mirror

to mirror monopole operator).

It is possible to find chiral analogues of these, supplemented by odd currents

Xiξ
i and Y iχi and various replacements Xi ↔ χi , Y

i ↔ ξi . Systematic

constructions?
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SQED[2] Example



SQED[2] Example

We now exemplify this in the simple example Q = (1, 1), i.e. SQED[2]. We

have

MH(SQED[2]) ∼= MC (SQED[2]) ∼= A1 ,

as well as the Springer [Springer] resolution

T ∗P1 → A1 .

The choices ϵ = (+−) and ϵ = (++) correspond to two diffent T ∗C× ⊂ T ∗P1,

with (+−) not supported on the core (it therefore descends to A1),

µH

0 ζ

µH

0

µH

0 ζ

µH

0
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SQED[2] Example

Let us fix ϵ = (+−)

J =
2∑

i=1

ϵi (Jσi + Jγi )c .

In this simple example, we can obtain [Creutzig, Linshaw]

VA(SQED[2]) ∼= V1(psl(2|2))

In fact, näıvely we can take generators cf. [Costello, Creutzig, Gaiotto]

βaγ
b , ξαχβ , βaξ

α , χαγ
a .

However:

•
∑2

i=1 ϵi (βiγ
i − ξiχi ) is not closed

•
∑2

i=1 ϵi (βiγ
i + ξiχi ) is exact.
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SQED[2] Example

From βiγ
j we obtain V−1(sl(2)) ⊂ V1(psl(2|2))

e = e(ρ1+ρ2)+(−σ1−σ2) = eδ+ϕ

h = Jσ1 + Jσ2 = −Jϕ

f = −J̄ρ1 J̄ρ2e
−(ρ1+ρ2)−(−σ1−σ2) =

(
−1

4
(Jδ)

2 + Tψ

)
e−δ−ϕ

where Tψ is a c = 1 stress tensor built out of the fermionic trace. Notice

• When Tψ = 0 this reproduces a famous construction by [Adamovic] for

Vk(sl(2)), k ∈ {− 4
3
,−2,− 1

2
}

• Tψ comes to the rescue to adjust the level to V−1(sl(2))

• This fact is key to our free-field realisation of V1(psl(2|2)) –it implies that

the quotient is implemented on the nose (unlike in other proposals, see

[Dei,Gaberdiel, Gopakumar])
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SQED[2] Example

Fermions bilinears realise V1(sl2) as in [Segal, Frenkel-Kac]. The odd generators (βiξ
α

etc.) manifestly carry a SL(2)o action

ΘαA1 = ψαA e
1
2
(δ+ϕ)

ΘαA2 =
1

2

(
∂ψαA − ψαA∂δ +

1

3
ϵβγϵ

ABψαBψ
β
Aψ

γ
C

)
e−

1
2
(δ+ϕ)

Deeper reason: the screening charges can be proven to transform in a

representation of this SL(2)o

s1 = e
1
2
(δ+ω1+ω2)

s2 = e
1
2
(δ+ω1−ω2)

Manifest outer lemma [Beem, AEVF]

The outer automorphisms of the hypertoric VOA act manifestly on the free

fields obtained via a choice ϵ if and only if T ∗Uϵ is not supported on the core.

Physically, resolutions break Coulomb symmetries.

19



SQED[2] Example

The choice ϵ = (++) is different but however also good, for different reasons.

With this choice we can “debosonise” the half-lattice

{(J̄ρ2e
ϕ+δ, e−ϕ−δ), s

(++)
2 } 7→ (β, γ) .

to obtain

e = J̄ρ2e
ϕ+δ = β

f = J̄ρ1e
−ϕ−δ = (−βγ +Ψi Ψ̃

i )γ

h = −∂ϕ = 2βγ −Ψi Ψ̃
i .

for a slightly different choice of fermions. The other screening operator

s
(++)
1 = e

1
2
(δ−ω1−ω2)

remains to tell us that γ is a coordinate on P1

γ(z)s1(w) ∼ O
(

1

z − w

)
,
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SQED[2] Example

Geometrically, this comes from an open embedding of Recall Ben’s talk!

T ∗C ∼= MC (SQED[1]) ↪→ MC (SQED[2]) ∼= MH(SQED[2]) .

There always is [Recall Ben’s talk] a homomorphism from a Coulomb branch to one

with less matter. Sometimes, monopole operators can be inverted to turn it

into an isomorphism.

Abelain Coulomb perspective

Certain free fields come from embeddings of pure Coulomb branch algebras

(Dch(C×)), or SQED[1] (Dch(C)).

This is more broadly related to restriction functors between certain Coulomb

branch algebras [Kamnitzer, Webster, Weeks, Yacobi]
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SQED[N] example



SQED[N] example

Let now be N > 3 and

Q =
(
1 1 · · · 1

)
, MH(T ) ∼= Ōmin(sl

∗
N) .

The global sections of [Kuwabara] give in this case

VHeis
A (SQED[N]) ∼= V−1(slN) .

By [Arakawa, Moreau]

XV−1(slN )
∼= S̄min(slN) ,

and

Ōmin(slN) ⊊ S̄min(slN) .

Famously,

S̄min(slN) ̸⊂ N (sl(N)) ,

and so VHeis
A (SQED[N]) is not quasi-lisse. How about VA(T )?
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SQED[N] example

Let us consider VA(SED[N]). Using standard results for free fermions/lattices

[Segal, Kac][Frenkel], it is easy to see that the even part is

V−1(slN)⊕ V1(slN)

For N > 2, one can check that the BRST computation gives (for

ϵ = {+, · · · ,+} say)

VA(SQED[N]) ∼=
⊕
m∈Z

N−1⊕
j=0

L−1(slN , λ(−mN − j))⊕ L1(slN , ωj) .

and using results of [Adamovic,Frajria,Papi,Peřse] this gives

SQED[N] Theorem, Part 1 [AEVF,Suter]

VA(SQED[N]) ∼= V1(psl(N|N))
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SQED[N] example

Moreover, we can show that V1(psl(N|N)) is a super- quasi-lisse extension of

L−1(slN)

• For all N > 1 we know on general grounds:

XVA(SQED[N]) ⊂ sl∗N × sl∗N

• We can show there exists a vector obtained by acting with odd elements

on the vacuum

v = e1,7(−1)e
1,8
(−1) |0⟩

generating a submodule Uv containing the maximal submodules of

V±(slN), and so

XVA(SQED[N]) ⊂ sl∗N × {pt.}

• We can show that all 2× 2 minors of functions on sl∗N are nilpotent in

V 1(psl(N|N))/Uv , modulo elements in c2(V1(psl(N|N)))!

24



SQED[N] example

Recall then the Springer resolution [Springer]

T ∗SL(N,C)/B ∼= T ∗PN−1 → Ōmin(sl
∗
N) .

SQED[N] theorem part 2) [AEVF,Suter]

For all N > 1 we have

XV1(psl(N|N))
∼= Ōmin(sl

∗
N) .

In particular, V1(psl(N|N)) is quasi-lisse, and can be viewed as a chiral

quantisation of the algebra of functions on T ∗PN−1.

Remarks:

• It follows from [Creutzig,Dimofte,Niu] that self-exts recover C2/ZN

• For the choice of vector ϵ ∈ {−,+,+, · · · ,+} one can obtain beautiful

free field realisations for Ōmin(slN) in terms of subsets

(T ∗CN−2 × T ∗(C×))/Z2 [Beem, Meneghelli, Rastelli]
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A glance at the mirror

The mirror example is supposed to give a fermionic extension of the W algebra

W−N+1(slN , fsubreg) [Kuwabara], [Yoshida], [Beem, Ferrari]. For N = 3, VOA on C2/Z3

(δ, δ) = −(ϕ, ϕ) = 3

W := eϕ+δ ,

WA := ψ
Ae

2
3
(ϕ+δ)

,

WAB := ψ
A
ψ
B e

1
3
(ϕ+δ)

,

WABC := ψ
A
ψ
B
ψ
C
.

Z := e−ϕ−δ ,

ZA :=
(
1
9
(∂δ + Jψ )(Jδ − 2Jψ )ψ̃A − 1

3
(Jδ + Jψ )ψ̃′

A − 1
12
ϵABC ϵ

DEF
ψ
B
ψ
C
ψ̃D ψ̃E ψ̃F

)
e
− 2

3
(ϕ+δ)

,

ZAB :=
(
− 1

3

(
∂δ + Jψ

)
ψ̃Aψ̃B + 1

6
ϵABC ϵ

DEF
ψ
C
ψ̃D ψ̃E ψ̃F

)
e
− 1

3
(ϕ+δ)

,

ZABC := ψ̃Aψ̃B ψ̃C .

W (z)Z(w) ∼
1

(z − w)3
+

Jϕ

(z − w)2
+

1

(z − w)

( 1

2
∂Jϕ +

1

3
JϕJϕ +

1

6
JϕJψ +

1

6
JψJϕ

)

+
1

(z − w)

−
1

6
JψJψ +

1

2

3∑
A=1

(
J+,AJ

−
A

− J
−
A

JA,+
) .

Notice: SL(3,C)o is manifest.
26



Minimal tension holography



Associated varieties as a “holographic boundaries”

Recall: whilst a universal affine VOA V k(g) can be viewed as a chiral

quantisation of the algebra of functions on g∗

XV k (g)
∼= g∗ ,

quotients may be chiral quantisations of subvarieties of g∗

XVk (g) ⊂ g∗ .

When XVk (g) ̸= g∗ (and perhaps Vk(g) is chirally free), this may very loosely be

viewed as a holographic statement: only a subvariety of g∗ contributes to the

construction of Vk(g).

Claim

This is less of an April Fools’ hoax than it sounds in minimal tension string

theory
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Minimal tension strings in AdS3 × S3

One crucial ingredient of the world-sheet model for string theory on AdS3 × S3

in the hybrid formalism [Berkovits, Vafa,Witten] is a WZW model to the supergroup

PSU(1, 1|2), the isometry group of AdS3 × S3.

×

AdS3 S3

sl(2,C)−1 sl(2,C)1

The level of the affine Kac-Moody algebra corresponds to the units of NS-NS

flux on S3. Thus, at minimal flux [Gaberdiel et al.] k = 1, the relevant VOA is

V1(psu(1, 1|2)), whose complexification is V1(psl(2|2)).
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Minimal tension strings in AdS3 × S3

We can represent an element of SL(2,C) as

g = eΦ
(
e−2Φ + γγ̃ γ

γ̃ 1

)

where γ and γ̃ are coordinates on the conformal boundary (complex conjugates

in Lorentzian signature). Holomorphic WZW currents can be computed as

usual

J = g∂g−1 =

(
γβ + ∂Φ −γ2β − ∂γ − 2γ∂Φ

β −γβ − ∂Φ

)
with β = e2Φγ̃. At the quantum level, these give Wakimoto free field

generators.

Observation

By explicit comparison with our previous FFR, the boundary coordinate γ on

S2 ∼= P1 is identified with a coordinate on P1 ⊂ X̃V1(psl(2|2))
∼= T ∗P1. The

radial coordinate ∂Φ = Ψ̃iΨ
i is nilpotent!
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Minimal tension strings in AdS3 × S3

A hallmark of minimal tension string theory on AdS3 × S3 × T 4 is the

localisation of the world-sheet path integral onto covering maps from the

world-sheet Σ to the boundary S2
[Eberhardt,Gaberdiel,Gopakumar]

⟨γ(z) · · · ⟩phys = Γ(z)⟨· · · ⟩phys
Γ : Σ → S2 ∼= P1

reproducing the correlators of space-time symmetric product orbifolds e.g.

Symn→∞(T 4) [Lunin, Mathur],[Pakman, Rastelli, Razamat]

• The newest incarnation of the localisation arguments [Dei, Knighton, Naderi]

borrowed the above free field realisation. The main ingredient (besides

holomorphicity of γ) is a “secret representation” that can be identified

with our screening operators s
ϵ=(++)
2

• Thus the main gadget responsible for the localisation seems to be the

associated variety at k = 1

• The same can be said for other backgrounds (Xδ1(2,1,α) = Ōmin(sl
∗
2 )), and

possibly in higher dimensions (T ∗P3/twistors!) [Gaberdiel, Gopakumar]
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×

AdS3 S3

sl(2,C)−1 sl(2,C)1
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The End
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