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Introduction and motivation - I

The aim of this talk is to understand twisted indices of 3d N ≥ 2 gauge
theories from a quantum mechanical viewpoint, and explain rich connections
to geometry.

In the first half, we will warm up
with the study of QM models with
simple targets.

In the second half, we will view 3d
N = 2 SUSY gauge theories
twisted on R× Σ surface as a
quantum mechanics on R
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Introduction and motivation - II

• The Witten index of a quantum mechanics

trH(−1)F e−βH

receives only contributions from zero-energy states. It is an indicator of
e.g. for supersymmetry breaking.

• For a QFT in d dimensions, we can similarly define the Witten index on
the torus

T d ∼= (S1)d ,

which is a graded count of SUSY vacua in flat space.
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Introduction and motivation - III

• More generally, twisted indices are partition functions of SUSY theories
on manifolds

S1 ×Md−1 ,

additionally graded by flavor symmetries

trH(−1)F e−βHy Jf .

• They can e.g. be used to checks dualities, or to count microstates of
blackholes in AdS (via AdS-CFT) [Benini,Hristov,Zaffaroni,...].

Why geometry and why R× Σ?

• More powerful descriptions of SUSY groundstates.

• Connections to beautiful topics in mathematics, such as the Geometric
Langlands Program and Symplectic duality [Gaiotto,Kapustin,Witten,..]

• Hilbert spaces on R× Σ are expected to be isomorphic to conformal
blocks of interesting VOAs on Σ [Gaiotto,Costello,Creutzig,Dimofte...].
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SUSY algebra and multiplets

A N = 2 quantum mechanics has two supercharges with non-trivial relation

{Q,Q†} = H .

Supersymmetric groundstates H are configurations annihilated by both Q and
Q†. Provided the spectrum of H is gapped,

H ∼= H•Q† .
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Multiplets

Given a gauge group G , there are three different kinds of multiplets:

• Vector (σ, λ, λ̄,A,D), valued in Ad(G).

• Chiral (φ, ψ), valued in a representation Vc of G .

• Fermi (η,F ), valued in a representation Vf of G .

From now on, we only consider G = U(1).
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Deformations

We can and will turn on a real FI parameter τ ∈ u(1)∗ that couples to D via a
∼ τ(D).

In the presence of a flavour isometry Gf , we can also turn on a background
vectormultiplet with constant real mass m ∈ tf ⊂ gf and background gauge
field, which complexify the mass.

This has the effect

Q† 7→ Q†m := e−µf ·mQ† eµf ·m

H 7→ Hm := H −m · Jf .

Whether the spectrum is gapped may in general depend on m.
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Phases

The scalar potential without real masses is

U(σ, φ) = |σφ|2 +
e2

2
(µG (φ)− τ)2 + · · ·

while real masses lead to a shift σ 7→ σ + m.

We will mainly be concerned with geometric phases, where |τ | >> 0 and the
gauge group is broken.

Then the SQM has an effective description in terms of a sigma model to

MH := {φ|µG (φ) = τ}/U(1) .

Often, we can identify
Q†m = ∂̄m ,

a deformed Dolbeault operator.
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Witten index and localisation - I

The Witten index is defined as

I = trH(−1)F y JF .

Powerful Coulomb-branch localisation formulas have been derived
in [Kim,Hori,Yi 2015]. The result for U(1) theories is

I =
1

2πi

∮
JK

dx

x
Zcl(x)Z1−loop(x , yi ) .

Here

• x = e−2πβσ+2πiβA parametrises the CB MC
∼= C∗.

• yi = e−2πβmi+2πiβνi encodes the background deformations.
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Witten index and localisation - II

For N chiral multiplets we have

Z1-loop, chiral =
N∏
i=1

(
(xyi )

1/2

1− xyi

)
.

For N Fermi multiplets, we have

Z1-loop, Fermi =
N∏
i=1

(
1− xyi
(xyi )1/2

)
.

The classical piece contains contributions from Wilson lines that are x l for
lines of charge l .

The JK residue prescription depends on an auxiliary parameter. If we set
η = τ , it selects the poles of the chiral muliplets that are positively charged if
τ > 0 and negatively if τ < 0.
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Free Fermi and chirals

For one chiral with 0 6= m ∈ tf , supersymmetric groundstates are (anti)- hol.

functions that are square integrable with respect to e∓m|φ|2 .

This is the Segal-Bargmann formulation of a complex harmonic oscillator.

Hc =

{
[φne−m|φ|2 ] | n ∈ N} ∼= Ŝ•(φ) m > 0

[φ̄nem|φ|
2

ψ] | n ∈ N} ∼= Ŝ•(φ̄) m < 0

Here Ŝ•(V ) = det1/2(V )S•(V ). This is the correct expansion of the Witten
index.

I =
y 1/2

1− y
= y 1/2(1 + y + y 2 + y 3 + · · · )

For Fermi multiplets the check is even easier

HF = ∧̂•(η) ,

where
∧̂•(V ) = det−1/2(V ) ∧• (V ) .
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CP1 model - I

Consider a U(1) gauge theory with 2 chirals of charge (+1,+1) and a Wilson
line of charge l , l < 0. In the geometric phase τ >> 0 the theory is a sigma
model into

µ−1
G (τ)/U(1) ∼= (C2 − {0})/C∗ ∼= CP1 .

The Wilson line generates a bundle on this space, which combined with the
charge of the vacuum gives

O(l − 1)→ CP1 .

Notice that l ∈ Z corresponds to the absence of gauge anomalies (Gauss’ law).

By the definition of the index we expect

I =
∑
i

H•,i
∂̄

(CP1,O(l − 1)) = χ(CP1,O(l − 1)) .
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CP1 model - II
There are various useful ways to see how this comes about

1

2πi

∮
x=y,x=y−1

x l 1

1− xy

1

1− xy−1
=

1) Count homogeneous functions

= −Resx=0x
l(1 + xy + (xy)2 + · · · )(1 + xy−1 + (xy−1)2 + · · · ) = −

−l−1∑
i=0

y l+1+2i

2) Hirzebruch-Riemann-Roch

=
y→1

Resx=1

(
x l

(1− x)2

)
=

∫
CP1

Td(CP1)ch(O(l − 1)) = −l

3) Atiyah-Bott-Berline-Vergne fixed-point localisation

=
y l+1

(1− y 2)
+

y−l−1

(1− y−2)
= −

−l−1∑
i=0

y l+1+2i

=
2∑

i=1

i∗pi
(
Td(CP1)ch(O(l − 1))

)
e(Npi )

.
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CP1 model - Wall-crossing

The first one is really just a trick, but it gives a first hint about the
phenomenon of wall-crossing when τ goes from positive to negative.

Notice that x = 0 corresponds to σ = −∞. The point here is that as we cross
from positive to negative, the supersymmetric groundstates start flowing from
the Higgs branch to the Coulomb branch and eventually “escape” to infinity.

In this case, all states have escaped, but this is not the general behaviour.
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Twisted 3d N = 2 theories

Consider now a 3d N = 2 theory. It has a SU(2)R R-symmetry group. We
assume there is an unbroken U(1)R symmetry group and perform a
quasi-topological twist.

Two scalar nilpotent supercharges
survive, preserving the SUSY
algebra of a N = 2 QM.

We can define the index on S1 × Σ
and consider this as originating
from a SUSY QM on R valued in
field configurations on Σ.

In other words, we want to study a
sigma model

R→ “Maps”(Σ→ Target) .
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Multiplet decomposition and deformations

A twisted 3d theory comes endowed with a principal U(1) bundle P on Σ,
together with an associated bundle E = P ×ρ V . The multiplets decompose
into 1d multiplets [Bullimore,AF 2018]

3d mutliplet 1d vector 1d chiral 1d Fermi

chiral Ω0,0(E ⊗ K r/2) Ω0,1(E ⊗ K r/2)
vector Ω0,0(Ad(P)) Ω0,1(Ad(P)) .

• Notice that D1d 6= D, but rather D = D1d − i ∗ FA.

• Kinetic terms on the curve are superpotentials from the 1d perspective

• In 3d we obviously have Chern-Simons terms.
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Deformations and index

3d theories enjoy deformations as much as 1d theories, and more.

• In addition to m and ν for every flavour symmetry, we can turn on
background connections on the curve. Thus, SUSY states must fibre

H → Bun(Gf ,Σ) .

However, we will only mention this for free theories today.

• For each U(1) factor there is a distinguished U(1)T flavour symmetry,
called topological symmetry. For our purposes, it counts the magnetic
flux on Σ.

The corresponding real mass is a 3d FI parameter ξ. It is NOT a 1d FI
parameter. This is complexified and exponentiated to a parameter q.

With this in mind, we can define the twisted index as a Witten index for the
quantum mechanics

I = trH0 (−1)F y Jf qJt =
∑
m∈Z

qmtrH0,m(−1)F y Jf .

Where H0,m is the space of SUSY groundstates with magnetic charge m.
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First localisation scheme

The twisted index in 3d has also been computed using Coulomb-branch
localisation scheme, taking e2 → 0 and g 2 → 0 in [Benini,Zaffaroni 2015 &
2016][Kim,Closset 2016]

L =
1

e2
LYM +

1

g 2
Lφ + LCS + LFI .

For a U(1) theory, the classical Coulomb branch is

MC , classical
∼= C∗ .

parametrised again by x = e−2πβσ+2πiA0 . The index reads:

I =
∑
m∈Z

1

2πi
qm

∮
JK

dx

x
Zclassical(x)Z1-loop,m(x , yi )H

g (x , yi ) .

where m runs over the degree of the gauge bundle.
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JK prescription

The contributions are

Zclassical = xkmx l

Z1-loop,m(x , yi ) =
N∏
i=1

((
xQi yi

)1/2

1− xQi yi

)Qim−(r−1)(g−1)

H(x , yi ) = k +
N∑
j=1

Q2
j

(
1

2
+

xQj yj
1− xQj yj

)
JK depends on an auxiliary parameter η ∈ u(1)∗. As in 1d, it picks poles of
chirals according to sign, but this time assigns charges

Q0 = −k+
eff , Q∞ = k−eff .

where k±eff are the one-loop ren. k at σ = 0,∞.

• This is not really well-defined when k±eff = 0, and the prescription is not
to take these poles.

• It gives a η-independent answer only after having summed over every m.
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Second localisation scheme and wall-crossing

We would ideally like to have a well-defined prescription for each flux sector
m. Decompose the 3d FI Lagrandian into a 1d FI Lτ and another piece L′FI

Lτ = −iD1dτ

[Bullimore,AF,Kim 2019] and consider

L =
1

t2

(
1

e2
LYM + Lτ

)
+

1

g 2
Lφ + LCS + L′FI .

In the limit t2 → 0 we get an identical localisation formula, but with

Q0 =

{
−k+

eff if k+
eff 6= 0

m− τ ′ else
, Q∞ =

{
+k−eff if k−eff 6= 0

m− τ ′ else

where τ ′ = e2vol(Σ)
2π

τ . This clearly depends on τ ′, and for τ ′ 6∈ Z is
independent of η. In particular,

I(τ ′ = m + ε)− I(τ ′ = m− ε) = qm
[
δ0,k+

eff
Resx=0 − δk

eff−,0
Resx=∞

]
Im .

For concreteness, pick sign(η) = sign(m− τ ′).
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Third localisation scheme

With the previous Lagrangians, we now set g = t and send t2 → 0 with e2

finite. The localisation locus becomes

∗ FA + e2

(
µG (φ)− t2σ

keff(σ)

2π
− τ
)

= 0

dAσ = 0 , ∂̄Aφ = 0 , σφ = 0 .

Schematically, we expect à la HRR

I =
∑
m∈Z

qm

∫
Mm

Â(Mm)ch(F) ,

There are two obvious classes of solutions to the above equation when τ
′
6= m

[Bullimore,AF,Kim,Xu 2020]:

• Vortex: σ remains finite and so the term with CS level disappears;

• Topological: t2σ remains finite (|σ| → ∞) and φ = 0.
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Free theories

First, let us understand a free 3d N = 2 chiral multiplet. We had

3d mutliplet 1d vector 1d chiral 1d Fermi

chiral Ω0,0(E ⊗ K r/2) Ω0,1(E ⊗ K r/2)

where we E is demoted, for free theory, to a background bundle of degree d .

Thus, we have nc 1d chiral mulitplets and nF Fermi multiplets with
nc = h0(E ⊗ K 1/2), nF = h1(E ⊗ K 1/2)

I =

(
y 1/2

1− y

)nc−nF

,

where nc − nF = d + (r − 1)(g − 1) depends only on the degree.
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Topological saddles - I

We focus on U(1) 1
2

with one chiral of charge r = 1

∗ FA + e2

(
|φ|2 − t2σ

keff(σ)

2π
− τ
)

= 0

dAσ = 0 , ∂̄Aφ = 0 , σφ = 0

where k+
eff = 1 and k−eff = 0.

Since k+
eff 6= 0, consider for τ ′ −m < 0 and σ →∞

τ ′ −m = −e2vol(Σ)

4π2
σ0k

+
eff , ∗FA =

2πm

vol(Σ)
.

We therefore have

Mm = Picm(Σ) ∼= Picm(Σ)× [pt/C∗] ,

In order to integrate over Mm,

• We first integrate over Picm(Σ) :=Mm

• We then project onto C∗-invariant contributions.
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Topological saddles - II

Notice that the vectormultiplet contributions H1(Ad(P)) span tangent
directions to Mm whereas H0(Ad(P)) parametrise the C∗.

• There is an “index bundle” E• for the matter contributions, with
K-theory class

[E•] = [H0(E ⊗ K 1/2)]− [H1(E ⊗ K 1/2)]

over the point E . Using the universal line bundle U →Mm × Σ and the
double fibration

Mm × Σ

Mm Σ

π p

we can globalise
E• ∼= R•π∗(U ⊗ p∗K 1/2) .

• A line L1/2 depending on the CS level.
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Topological saddles - III

After some manipulations and integration over Mm, we get∫
Mm

Â(Mm)
ch(L1/2)

ch(∧̂•E)
= x1/2m

(
x1/2

1− x

)m
1

(1− x)g
.

This is exactly the integrand computed from localisation! Then we have to
project into C∗-invariant expressions. We have σ =∞ and so∮

x=∞

dx

x

This is consistend with the assignment of charges from the localisation result!

Upshot: we have a fibration over
Mm. The gaugini span directions
tangent to the base, and
integration over them yields the
Hessian Hg . The whole system is
gauged.
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Vortex saddle - I

For vortex saddles, φ 6= 0 and σ remains finite.

∗FA + e2
(
|φ|2 − τ

)
= 0 .

Integrating over Σ
(τ ′ −m) = ||φ||2 > 0 .

Provided this is satisfied, we have an isomorphism

Mm
∼= Symm(Σ) , F = L1/2 ,

In fact, the zeros of φ (center of the vorices) parametrise the moduli space.

bτ ′c∑
m=−∞

qm

∫
Symd (Σ)

Â(Symd(Σ))ch(L1/2))

=

bτ ′c∑
m=−∞

qm

2πi

∮
x=1

dx

x

xm

(1− x)m+g
.

Consistent with JK!
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Vortex saddles - II

Can we understand this better?

• The massless flutuations around a point of Mm conspire to give

0→ H0(O)→ H0(E ⊗ K 1/2)→ TSymm(Σ)→

→ H1(O)→ H1(E ⊗ K 1/2)→ 0 .

• There is a map P : Symm(Σ)→ Picm(Σ) so that

P−1(L) = PH0(E ⊗ K 1/2) .

This is a fibration if H1(E ⊗ K 1/2)=0.

• The “Hessian” part in the integrand comes again from integrating over
Picm(Σ), quite literally as in the case of topological vacua.

• The different residue at x = 1↔ σ = 0 is also intuitive and compatible
with the BPS equations: we are setting σ = 0 and discovering that the
gauge symmetry is completly broken (therefore the “P”).
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Generalisations

Let us consider some generalisations [Bullimore,AF,Kim 2018]:

• We can trade the vortex equation for a stability condition and complex
gauge transformations, via the Hitchin-Kobayashi correspondence. What
we have seen (producing Symm(Σ)) is a simple version of this.

• The stability condition simplifies for |τ ′| → ∞, because the support of
the curvature term shrink to points. The outcome is usually a moduli
space of quasi-maps to MH , i.e. pairs (E ,X ) where of a vector bundle
with a section where X fails to hit MH at a finite number of points.

• Provided there is a sufficient amount of flavour symmetry, we can then
localise to points on MH , and consider maps to these points. Symmetric
products!
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3d Mirror Symmetry

3d mirror symmetry is an infrared duality that interchanges

y ↔ q .

Two of the theories we consider are mirror dual, a free chiral and U(1)1/2:

U(1)1/2 ↔ 1 chiral .

In order to check this, we take τ ′ →∞ . This correponds to the limit of large
curve, and so to an IR limit. For the U(1)1/2 we have

I[U(1)1/2] =
∞∑

m=−∞

qm

2πi

∮
x=1

dx

x

xm

(1− x)m+g
=

(
q

1− q

)1−g

.

I
[

1-chiral,CS = −1

2
, r = 0

]
=

(
y

1− y

)1−g

We can also check agreement of the SUSY groundstates using the geometric
picture. Much richer check!
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N = 4 theories and quasi-maps - I

3d N = 4 theories are determined by:

• A gauge group G

• A quaternionic representation RH for the matter multiplets.

An important class of theories are quiver gauge theories with RH = R⊕R∗.
The Higgs branch can again be defined as the hyperkähler manifold

MH := µ−1
G (ζ)///G .

The Coulomb branch of vacua MC is more difficult to define properly, but is
also is a hyperkḧler manifold. 3d mirror symmetry exchanges

MC ↔MH

and is mathematically formulated in terms of symplectic duality, a conjectural
duality between geometric data associated to mirror pairs of hyperkähler
manifolds.
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N = 4 theories and quasi-maps - II

What can we say about symplectic duality from the twisted index point of
view?

• There are two possible kinds of topological twists, A and B.

• Mirror symmetry exchanges the two.

• Let T be a theory and MX
m be the space of X-twisted quasi-maps to MH ,

X = A,B. Schematically, the index is

I[T ,X ] =
∑
m

qm

∫
MX

m

Â(TMX
m) .

• Mirror symmetry tells us

I[T ,A](q, y) = I[T ∨,B](y∨, q∨) .

Degree-counting and equivariant parameters are exchanged. Highly
non-trivial!
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The End
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