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Introduction and motivation - |

Recent excitement surrounding non-invertible symmetries:

e Ubiquitous in QFTs

[Heidenreich, McNamara, et al.] [Kaidi, Ohmori, Zheng] [Bhardwaj, Bottini, Schifer-Nameki, Tiwari]

e Physical (including real-world) consequences starting to become manifest.

[Koide, Nagoya, Yamaguchi[Lin, Okada, Seifnashri, Tachikawa][Choi, Cordova, Hsin, Lam, Shao]
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Recent excitement surrounding non-invertible symmetries:

e Ubiquitous in QFTs
[Heidenreich, McNamara, et al.] [Kaidi, Ohmori, Zheng] [Bhardwaj, Bottini, Schifer-Nameki, Tiwari]
e Physical (including real-world) consequences starting to become manifest.

[Koide, Nagoya, Yamaguchi[Lin, Okada, Seifnashri, Tachikawa][Choi, Cordova, Hsin, Lam, Shao] ...

In a D-dimensional theory, topological defects are expected to form a
(D — 1)-fusion category. These categories may be quite intricate, which makes

it difficult to unleash their full power.

Question
Can one systematically construct theories with non-invertible symmetries

whose respective (D — 1)-fusion categories are completely under control?
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Various ways to produce non-intrinsically non-invertible symmetries:

e Gauge a discrete symmetry with some 't-Hooft anomaly; («aidi, ohmori, Zheng]

e Gauge non-normal finite subgroup of a global symmetry; (arias Tamargo,

Rodriguez-Gomez] [Bhardwaj, Bottini, Schifer-Nameki, Tiwari] [Antinucci, Galati, Rizi] [Nguyen, Tanizaki, Unsal] ...

e Gauge a higher-form symmetry along higher co-dimension submanifolds;

[Roumpedakis, Seifnashri, Shao]...

e Gauge symmetry along with lower-dimensional TQFT. [Bhardwaj, Schifer-Nameki, wu]
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Various ways to produce non-intrinsically non-invertible symmetries:

e Gauge a discrete symmetry with some 't-Hooft anomaly; («aidi, ohmori, Zheng]

e Gauge non-normal finite subgroup of a global symmetry; (arias Tamargo,

Rodriguez-Gomez] [Bhardwaj, Bottini, Schifer-Nameki, Tiwari] [Antinucci, Galati, Rizi] [Nguyen, Tanizaki, Unsal] ...

e Gauge a higher-form symmetry along higher co-dimension submanifolds;

[Roumpedakis, Seifnashri, Shao]...

e Gauge symmetry along with lower-dimensional TQFT. [Bhardwaj, Schifer-Nameki, wu]

Well-known systematic case

[Fréhlich, Fuchs, Runkel, Schweigert][Carqueville, Runkel][Bhardwaj, Tachikawa]

e Gauge a finite group G in D = 2;

e Resulting theory has topological Wilson lines that fuse according to
Rep(G);

e If G is non-abelian obtain non-invertible symmetry category Rep(G).
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non-anomalous subgroup S C G L (D — 1)-symmetry category related

to the higher representation theory of S.



General Proposal

D-dimensional theory with finite (D — 1)-group symmetry G and

non-anomalous subgroup S C G L (D — 1)-symmetry category related

to the higher representation theory of S.

1
Today [Bartsch, Bullimore, AEVF, Pearson] ™ :

e D=3;
e G finite anomaly-free 2-group;
e S=G.
Gauging a 2-group in D =3
Theory 7 with non-anomalous, finite 2-group G - Theory 7 /G with

symmetry category 2Rep(G)

This applies to a large class of gauge theories.

1See also [Bhardwaj, Schifer-Nameki, Wu][Lin,Robbins, Sharpe]
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A Lightning Review of 2-Representations

Representations of a group as functors
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Intertwiners are natural transformations. Similarly, 2-representations of

2-groups are (pseudo)functors between 2-categories [esez et al]
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A Lightning Review of 2-Representations

Here
Is a 2-group thought of as an equivalence class of

crossed modules

QO 0 — A[l] — 2Hom (e, ) — End(e) - H — 0

H is the zero-form part;

Q)
@

(

A[1] is the one-form part;
e Can reconstruct action p: H — Aut(A[1]);

e Can reconstruct Postnikov class 6 € H3 (H, A[1]).



A Lightning Review of 2-Representations

Is a 2-representation F on the 2-category 2Vect, up to

equ ivalence [Kapranov-Voedovsky][Osorno] -

Iy
QD e Objects: natural numbers n
F(a) O”D e 1-morphisms: n X m matrices with vector space
entries
Fe For
N e 2-morphisms: collections of linear maps between

F(B) those vector spaces
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Finite Group Symmetry and 2Vectg

Consider a theory 7 with a finite group symmetry G. Simple objects are

surface operators labelled by elements g

A general object is a G-graded set

R=||Rs,

g€eG
with Ry = {1, ey ng}.
(R@R/)g =Re Ung
ROR)g= | | RnxRu.

g=hh’



Finite Group Symmetry and 2Vectg

1-morphisms are topological lines at junctions between surfaces

Vect g=g

/
Hom7(g,g") = ,
0 4
that is
Vo VeV VoV VeV
9 g g 4d 99

e 1-morphisms: ng X n, 2-matrices whose components are vectors spaces

e 2-morphisms: collections of homogeneous linear maps between 2-matrices

This is 2Vectg!
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Gauging a Finite Group

To gauge G, insert algebra object

A=EPh,

heG

Topological surface in 7/G < Topological surface in 7 + instructions for

how A ends on it inside correlation functions

In.g € Hom7(h® Re, Rng)

lh,y Tg.h
rg-,h € HOmT(Rg ® h7 Rgh) Rhy R_l/ Ryh R,(/
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Gauging a Finite Group

To gauge G, insert algebra object

A=EPh,

heG

Topological surface in 7/G < Topological surface in 7 + instructions for

how A ends on it inside correlation functions

In.g € Hom7(h® Re, Rng) .
h,g Tg.h
Ie,h & HOIHT(Rg ® h7 Rgh) Rhy R_I/ Ryh Rg/
h

Compatibility conditions best expressed in terms of p; = (rz o lg.e)

Pg

11



Gauging a Finite Group

Study of compatibility conditions leads to the following classification of

topological surfaces in 7/G:

1. Aset SR = {1,...,n};
A collection of n x n 2-matrices py = (rz ;) o lg,e € Hom(S,S);

A 2-isomorphism W, : 15 = pe;

> @ P

2-isomorphisms W, 1, : pgh = pg © ph.

With the 2-isomorphisms subject to further conditions
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Gauging a Finite Group

Study of compatibility conditions leads to the following classification of

topological surfaces in 7/G:

1. Aset SR = {1,...,n};
A collection of n x n 2-matrices py = (rz ;) o lg,e € Hom(S,S);

A 2-isomorphism W, : 15 = pe;

> @ P

2-isomorphisms W, 1, : pgh = pg © ph.

With the 2-isomorphisms subject to further conditions

This is precisely an object in 2Rep(G)! (Eigueta][0somo]

12



Gauging a Finite Group

More conveniently, this can be rephrased as

1. A G-set S;
2. Aclass ¢ € H*(G, U(1)%).

What is this more physically?

o If |S| =1, then ¢ € H*(G, U(1)®) determines an SPT phase on the
surface.

e If |[S| > 1, then these represent condensation defects.
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Gauging a Finite Group

More conveniently, this can be rephrased as

1. A G-set S;
2. Aclass ¢ € H*(G, U(1)%).

What is this more physically?

o If |S| =1, then ¢ € H*(G, U(1)®) determines an SPT phase on the
surface.

e If |[S| > 1, then these represent condensation defects.

To understand this, consider simple objects
(S,¢) = P (Oarca).
with

1. a G-orbit O,

2. aclass c € H*(G,U(1)°) .
13



Gauging a Finite Group

By an orbit-stabilizer correspondence/Shapiro’s isomorphism

1. G-orbit O <+ H C G subgroup,
2. c € H}(G,U(1)°) < c € H*(H, U(1)).

14



Gauging a Finite Group

By an orbit-stabilizer correspondence/Shapiro’s isomorphism

1. G-orbit O <+ H C G subgroup,

2. c € H*(G,U(1)?) «» c € H*(H, U(1)).
Simple objects in 2Rep(G)

Topological surfaces in 7/G where

e Bulk gauge symmetry is broken to H C G by partial Dirichlet boundary

condition;
e SPT phase ¢ € H*(H, U(1)).

This is a condensation defect [Roumpedakis Seifnashri Shao].

Insight corroborated by fusion of lines on simple surfaces (see later).

14



Gauging a Finite Group

e Fusion reproduces Mackey formulas for induction and restriction:

(Hayca) ® (H5>C5) = @ (HumH§7 Ca®C§);
[g]leHa\G/Hp

e 1-morphisms reproduce correct behaviour of Wilson lines, e.g.
Homz,6(1, (H,c)) = Rep(H)

(H,c)

15



Gauging a Finite Group

e Fusion between 1(4 ) € End((H,c)) and ¢ € End(1):
L ® e =l .

(H,c)
K ¢ #\H

16



Gauging G = Z,

Elements
Zo = {l,X}.

Simple 2-representations determined by choice of subgroup H C Z»

| H e|1 2
1 Zo 1 1 2
21{1}y 2|2 202

2 is a condensation defect. 1-morphisms
Vect

Rep(Zz)C 1 O 2 i}Vectz.Z

Vect

17



Gauging Finite 2-Groups




Gauging Finite 2-Group

Can play a similar game starting with a theory 7 with a 2-group G

G = (H,A[1], p,0) .

18



Gauging Finite 2-Group

Can play a similar game starting with a theory 7 with a 2-group G
G = (H, Alll, p,0) .
In particular, gauging it we obtain topological defects labelled by

e An H-set S with |S| = n;
e ce C¥(H,U1)%);
o x € (A)" so that dc = x.(), h-x(a) = x(h-a);

modulo equivalence relations.
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Gauging Finite 2-Group

Can play a similar game starting with a theory 7 with a 2-group G
G = (H, Alll, p,0) .
In particular, gauging it we obtain topological defects labelled by

e An H-set S with |S| = n;
e ce C¥(H,U1)%);
o x € (A)" so that dc = x.(), h-x(a) = x(h-a);

modulo equivalence relations.

These are the objects in 2Rep(G)! (eguetal
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Gauging Finite 2-Groups

This is easiest to describe for G a split 2-group, that is § =0
G=A[1]x,H:=A[l] xH
Then we can gauge in steps, starting from an ordinary group:

G=All]xH

T 2Vee(G)

T/H : 2Rep(G) T/H : 2Rep(G)

19



Gauging Finite Split 2-Groups

Symmetry category 7T is essentially a higher analogue of a semi-direct-product

~

Vecty; and Rep(A).

20
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~

Vecty; and Rep(A).

Simple objects in 7 /G are labelled by:

e An H-orbit O or equivalently a stabilizer subgroup K C H,
e Aclass c € H*(K, U(1));

e A K-invariant character x € A
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Gauging Finite Split 2-Groups

Symmetry category 7T is essentially a higher analogue of a semi-direct-product

~

Vecty; and Rep(A).
Simple objects in 7 /G are labelled by:
e An H-orbit O or equivalently a stabilizer subgroup K C H,

e Aclass c € H2(K7 u(1));

e A K-invariant character x € A
Remarks:

e Fusion, 1-morphisms, composition of 1-morphisms computed as as for an

ordinary group (induction-restriction);

e 1-morphisms can only exist between simple objects if and only if the

respective characters lie in the same H-orbits in A;

e Condensation determined by multiplicity of .

20



Example: (Z x Z)[1] x Z,

Take
G = (Zg7 Zn X Zz, p)

where Z, = {1, x} acts on Z» X Z» via

x - (a,b) := (b,a).

e Denote characters of Z» X Z> by {1, x1, X2, X1x2};
e Label each simple object by pairs (O, x).

21



Example: (Z x Z)[1] x Z,

The simple objects are
e the trivial 2-representation 1 = ({1}, (1)),
e a l-dimensional 2-representation V = ({1}, (x1x2)).
e a 2-dimensional 2-representation D = ({1,2}, (x1, x2)).
e condensation defect X = ({1,2}, (1, 1)),

e condensation defect X' = ({1,2}, (x1x2, X1X2))

where condensation is determined by multiplicity of x.

22



Example: (Z x Z)[1] x Z,

Fusion
VeVvV=1
VeD=DV =D
VeX=X

DeD=X®(1aV)
X@D=DeX=D®D
X®X=2X.

Only invertible simple objects are 1 and V. Fusion
DRD=X®(1® V)

already implemented at the level of simple objects.

23



Example: (Z x Z)[1] x Z,

Rep(Zs) Rep(Zs)

D
Vj//;ect D . th
o0 O

Vectz, Voot Vecty,

24



Gauge theory applications




Gauge theory applications

Simple Lie algebra g, associated compact, connected, simply connected Lie

group G. Automorphism 2-group
Z(G)[1] x Out(G)
where

e Out(G) outer automorphisms of G
e Z(G)[1] center of G.

and the Out(G)-action outer automorphism action.
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Gauge theory applications

Simple Lie algebra g, associated compact, connected, simply connected Lie

group G. Automorphism 2-group
Z(G)[1] x Out(G)
where

e Out(G) outer automorphisms of G
e Z(G)[1] center of G.

and the Out(G)-action outer automorphism action.

A pure G gauge symmetry has

e A O-form charge conjugation symmetry Out(G).

e A 1-form symmetry Z(G) generated by topological Gukov-Witten defects.

We can gauge this 2-group in steps. The 1-form electric symmetry is traded

with a 0-form magnetic symmetry.

25



Gauge theory applications

In general:
T T
2(G)[]
2Vect(Z(G)[1] » Out(G)) 2Vect(mi (FG) x Out(G))

Out(G) Out(G)

2Rep(Z(G)[1] x Out(G))

2Rep(m1 (X G) x Out(G))
7 /Out(G)

T/Out(G)

26



Gauge theory applications

In general:
T T
2(G)[]
2Vect(Z(G)[1] » Out(G)) 2Vect(mi (FG) x Out(G))

Out(G) Out(G)

2Rep(m1 (X G) x Out(G)) 2Rep(Z(G)[1] x Out(G))

T/Out(G) 7 /Out(G)
G = Spin(4N) (shardwaj, Bottini, Schifer-Nameki,Tiwari]:
Spin(4NV) PSO(4N)
(Z2 x Z2)[1]
Wect((Zoy x Zo)[1] % Zy) ~————— WVect((Za x Zo) % Zo)
Zo X Ty
Zs Zs

2Rep((Zo x Zo)[1] % Zs)

2Rep((Zo x Zs) x ZLs)
PO(4N)

Pin™(4N)

26



Conclusions and Outlook




Almlng towards [Bartsch, Bullimore, AEVF, Pearson, to appear]

Theory 7 in D dimensions with finite (D — 1)-group and anomaly
a e ZP(G,Uu(1));

Symmetry category Vect®(G);

e Gauge anomaly-free D-subgroup H C G;

Resulting category C°(G, a; H, 1) where a|y = dv.
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Almlng towards [Bartsch, Bullimore, AEVF, Pearson, to appear]

e Theory T in D dimensions with finite (D — 1)-group and anomaly
a e ZP(G,Uu(1));

e Symmetry category Vect®(G);
e Gauge anomaly-free D-subgroup H C G;
e Resulting category C°(G, a; H, 1)) where a|y = di.
Several expected equivalences:
e C°(G,;1,1) = (D — 1)Vect®(G) for any (D — 1)-group G.
e C°(G,1,G,1) = (D — 1)Rep(G) for any (D — 1)-group G.

27



Conclusions

Higher representation theory provides an efficient framework to investigate

[ ]
non-intrinsically non-invertible symmetries
e This is just the beginning
e The mathematics is being developed in parallel
e This perspective is probably helpful when thinking about actions on

non-topological defects (more anon)

28



The End

29
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