

Non-invertible symmetries and Higher Representation Theory

Andrea E. V. Ferrari

Based on joint work with T. Bartsch, M. Bullimore, J. Pearson

Symmetry Seminar

18.10.2022

Durham University andrea.ferrari@durham.ac.uk

Introduction and motivation - I

Recent excitement surrounding non-invertible symmetries:

• Ubiquitous in QFTs

```
[Heidenreich, McNamara, et al.] [Kaidi, Ohmori, Zheng] [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari]...
```

Physical (including real-world) consequences starting to become manifest.

```
[\mathsf{Koide},\,\mathsf{Nagoya},\,\mathsf{Yamaguchi}[\mathsf{Lin},\,\mathsf{Okada},\,\mathsf{Seifnashri},\,\mathsf{Tachikawa}][\mathsf{Choi},\,\mathsf{Cordova},\,\mathsf{Hsin},\,\mathsf{Lam},\,\mathsf{Shao}]\;\dots
```

Introduction and motivation - I

Recent excitement surrounding non-invertible symmetries:

- Ubiquitous in QFTs
 [Heidenreich, McNamara, et al.] [Kaidi, Ohmori, Zheng] [Bhardwai, Bottini, Schäfer-Nameki, Tiwari]...
- Physical (including real-world) consequences starting to become manifest.

```
[Koide, Nagoya, Yamaguchi[Lin, Okada, Seifnashri, Tachikawa][Choi, Cordova, Hsin, Lam, Shao] ...
```

In a D-dimensional theory, topological defects are expected to form a (D-1)-fusion category. These categories may be quite intricate, which makes it difficult to unleash their full power.

Question

Can one systematically construct theories with non-invertible symmetries whose respective (D-1)-fusion categories are completely under control?

Introduction and motivation - II

Various ways to produce non-intrinsically non-invertible symmetries:

- Gauge a discrete symmetry with some 't-Hooft anomaly; [Kaidi, Ohmori, Zheng]...
- Gauge non-normal finite subgroup of a global symmetry; [Arias-Tamargo, Rodriguez-Gomez] [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari] [Antinucci, Galati, Rizi] [Nguyen, Tanizaki, Ünsal] ...
- Gauge a higher-form symmetry along higher co-dimension submanifolds;
 [Roumpedakis, Seifnashri, Shao]...
- Gauge symmetry along with lower-dimensional TQFT. [Bhardwaj, Schäfer-Nameki, Wu]

Introduction and motivation - II

Various ways to produce non-intrinsically non-invertible symmetries:

- Gauge a discrete symmetry with some 't-Hooft anomaly; [Kaidi, Ohmori, Zheng]...
- Gauge non-normal finite subgroup of a global symmetry; [Arias-Tamargo,
 Rodriguez-Gomez] [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari] [Antinucci, Galati, Rizi] [Nguyen, Tanizaki, Ünsal] ...
- Gauge a higher-form symmetry along higher co-dimension submanifolds;
 [Roumpedakis, Seifnashri, Shao]...
- Gauge symmetry along with lower-dimensional TQFT. [Bhardwaj, Schäfer-Nameki, Wu]

Well-known systematic case

[Fröhlich, Fuchs, Runkel, Schweigert][Carqueville, Runkel][Bhardwaj, Tachikawa]...

- Gauge a finite group G in D=2;
- Resulting theory has topological Wilson lines that fuse according to Rep(G);
- If G is non-abelian obtain non-invertible symmetry category Rep(G).

General Proposal

D-dimensional theory with finite (D-1)-group symmetry G and non-anomalous subgroup $S\subset G \xrightarrow{\mathsf{Gauge}\ S} (D-1)$ -symmetry category related to the higher representation theory of S.

4

General Proposal

D-dimensional theory with finite (D-1)-group symmetry G and non-anomalous subgroup $S\subset G \xrightarrow{\mathsf{Gauge}\ S} (D-1)$ -symmetry category related to the higher representation theory of S.

Today [Bartsch, Bullimore, AEVF, Pearson] 1:

- *D* = 3;
- *G* finite anomaly-free 2-group;
- S = G.

Gauging a 2-group in D=3

Theory \mathcal{T} with non-anomalous, finite 2-group $G \stackrel{\mathsf{Gauge } G}{\Longrightarrow}$ Theory \mathcal{T}/G with symmetry category $\mathsf{2Rep}(G)$

This applies to a large class of gauge theories.

¹See also [Bhardwaj, Schäfer-Nameki, Wu][Lin,Robbins,Sharpe]

Overview

A Lightning Review of 2-Representations

Gauging Finite Groups

Gauging Finite 2-Groups

Gauge theory applications

Conclusions and Outlook

Representations of a group as functors

Intertwiners are natural transformations.

Representations of a group as functors

Intertwiners are natural transformations. Similarly, 2-representations of 2-groups are (pseudo)functors between 2-categories [Baez et al.]

Here

Is a 2-group thought of as an equivalence class of crossed modules

$$0 \to A[1] \to 2\mathrm{Hom}\,(e,\) \to \mathrm{End}\,(\bullet) \to H \to 0$$

- *H* is the zero-form part;
- A[1] is the one-form part;
- Can reconstruct action $\rho: H \to \operatorname{Aut}(A[1])$;
- Can reconstruct Postnikov class $\theta \in H^3_
 ho(H,A[1])$.

Is a 2-representation \mathcal{F} on the 2-category **2Vect**, up to equivalence [Kapranov-Voedovsky][Osorno]:

- Objects: natural numbers *n*
- 1-morphisms: $n \times m$ matrices with vector space entries
- 2-morphisms: collections of linear maps between those vector spaces

Finite Group Symmetry and 2Vect_G

Consider a theory $\mathcal T$ with a finite group symmetry G. Simple objects are surface operators labelled by elements g

A general object is a G-graded set

$$\mathcal{R} = \bigsqcup_{g \in G} \mathcal{R}_g$$
,

with $\mathcal{R}_g \cong \{1, \ldots, n_g\}$.

$$\begin{split} &(\mathcal{R} \oplus \mathcal{R}')_g = \mathcal{R}_g \sqcup \mathcal{R}'_g \\ &(\mathcal{R} \otimes \mathcal{R}')_g = \bigsqcup_{g = hh'} \mathcal{R}_h \times \mathcal{R}_{h'} \,. \end{split}$$

9

Finite Group Symmetry and 2Vect_G

1-morphisms are topological lines at junctions between surfaces

$$\mathsf{Hom}_{\mathcal{T}}(g,g') = egin{cases} \mathsf{Vect} & g = g' \ 0 & g
eq g' \end{cases}.$$

that is

- 1-morphisms: $n_g \times n_g'$ 2-matrices whose components are vectors spaces
- 2-morphisms: collections of homogeneous linear maps between 2-matrices

This is **2Vect**_G!

To gauge G, insert algebra object

$$\mathcal{A} = \bigoplus_{h \in G} h,$$

Topological surface in $\mathcal{T}/G \Leftrightarrow$ Topological surface in \mathcal{T} + instructions for how \mathcal{A} ends on it inside correlation functions

$$I_{h,g} \in \operatorname{Hom}_{\mathcal{T}}(h \otimes \mathcal{R}_g, \mathcal{R}_{hg})$$

 $r_{g,h} \in \operatorname{Hom}_{\mathcal{T}}(\mathcal{R}_g \otimes h, \mathcal{R}_{gh})$

To gauge G, insert algebra object

$$\mathcal{A} = \bigoplus_{h \in G} h,$$

Topological surface in $\mathcal{T}/G \Leftrightarrow$ Topological surface in \mathcal{T} + instructions for how \mathcal{A} ends on it inside correlation functions

$$I_{h,g} \in \operatorname{Hom}_{\mathcal{T}}(h \otimes \mathcal{R}_g, \mathcal{R}_{hg})$$

 $r_{g,h} \in \operatorname{Hom}_{\mathcal{T}}(\mathcal{R}_g \otimes h, \mathcal{R}_{gh})$

Compatibility conditions best expressed in terms of $\rho_g = (r_{e,g}^{-1} \circ l_{g,e})$

Study of compatibility conditions leads to the following classification of topological surfaces in \mathcal{T}/G :

- 1. A set $S \cong \mathcal{R}_e \cong \{1, \ldots, n\}$;
- 2. A collection of $n \times n$ 2-matrices $\rho_g = (r_{e,g}^{-1}) \circ l_{g,e} \in \text{Hom}(\mathcal{S}, \mathcal{S});$
- 3. A 2-isomorphism $\Psi_e: 1_S \Rightarrow \rho_e$;
- 4. 2-isomorphisms $\Psi_{g,h}: \rho_{gh} \Rightarrow \rho_g \circ \rho_h$.

With the 2-isomorphisms subject to further conditions

Study of compatibility conditions leads to the following classification of topological surfaces in \mathcal{T}/G :

- 1. A set $S \cong \mathcal{R}_e \cong \{1, \ldots, n\}$;
- 2. A collection of $n \times n$ 2-matrices $\rho_g = (r_{e,g}^{-1}) \circ l_{g,e} \in \text{Hom}(\mathcal{S}, \mathcal{S});$
- 3. A 2-isomorphism $\Psi_e: 1_{\mathcal{S}} \Rightarrow \rho_e$;
- 4. 2-isomorphisms $\Psi_{g,h}: \rho_{gh} \Rightarrow \rho_g \circ \rho_h$.

With the 2-isomorphisms subject to further conditions

This is precisely an object in 2Rep(G)! [Elgueta][Osomo]

More conveniently, this can be rephrased as

- 1. A G-set S;
- 2. A class $c \in H^2(G, U(1)^S)$.

What is this more physically?

- If |S| = 1, then $c \in H^2(G, U(1)^S)$ determines an SPT phase on the surface.
- ullet If $|\mathcal{S}|>1$, then these represent condensation defects.

More conveniently, this can be rephrased as

- 1. A G-set S;
- 2. A class $c \in H^2(G, U(1)^S)$.

What is this more physically?

- If |S| = 1, then $c \in H^2(G, U(1)^S)$ determines an SPT phase on the surface.
- If $|\mathcal{S}| > 1$, then these represent condensation defects.

To understand this, consider simple objects

$$(\mathcal{S},c)\cong\bigoplus_{\alpha}(\mathcal{O}_{\alpha},c_{\alpha}).$$

with

- 1. a G-orbit \mathcal{O} ,
- 2. a class $c \in H^2(G, U(1)^{\mathcal{O}})$.

By an orbit-stabilizer correspondence/Shapiro's isomorphism

- 1. G-orbit $\mathcal{O} \leftrightarrow H \subset G$ subgroup,
- 2. $c \in H^2(G, U(1)^{\mathcal{O}}) \leftrightarrow c \in H^2(H, U(1))$.

By an orbit-stabilizer correspondence/Shapiro's isomorphism

- 1. *G*-orbit $\mathcal{O} \leftrightarrow H \subset G$ subgroup,
- 2. $c \in H^2(G, U(1)^{\mathcal{O}}) \leftrightarrow c \in H^2(H, U(1))$.

Simple objects in 2Rep(G)

Topological surfaces in \mathcal{T}/G where

- Bulk gauge symmetry is broken to H ⊂ G by partial Dirichlet boundary condition;
- SPT phase $c \in H^2(H, U(1))$.

This is a condensation defect [Roumpedakis Seifnashri Shao].

Insight corroborated by fusion of lines on simple surfaces (see later).

• Fusion reproduces Mackey formulas for induction and restriction:

$$egin{aligned} ig(\mathcal{H}_{lpha}, c_{lpha} ig) \ &= igoplus_{[oldsymbol{\mathcal{g}}] \in \mathcal{H}_{lpha} \setminus G/\mathcal{H}_{eta}} ig(\mathcal{H}_{lpha} \cap \mathcal{H}^{oldsymbol{\mathcal{g}}}_{eta} \,, \, c_{lpha} \otimes c^{oldsymbol{\mathcal{g}}}_{eta} ig) \,; \end{aligned}$$

• 1-morphisms reproduce correct behaviour of Wilson lines, e.g.

$$\mathsf{Hom}_{\mathcal{T}/\mathcal{G}}(1,\,(H,c)) \;\cong\; \mathsf{Rep}^c(H)$$

• Fusion between $\mathbf{1}_{(H,c)} \in \mathrm{End}((H,c))$ and $\varphi \in \mathrm{End}(1)$:

$$\mathbf{1}_{(H,c)}\otimes\varphi=\varphi|_{H}.$$

Gauging $G = \mathbb{Z}_2$

Elements

$$\mathbb{Z}_2 = \{1, x\}.$$

Simple 2-representations determined by choice of subgroup $H\subset \mathbb{Z}_2$

	Н	\otimes	1	2
1	\mathbb{Z}_2	1	1	2
2	{1}	2	2	$2\oplus2$

2 is a condensation defect. 1-morphisms

Gauging Finite 2-Groups

Can play a similar game starting with a theory ${\mathcal T}$ with a 2-group ${\mathcal G}$

$$G = (H, A[1], \rho, \theta)$$
 .

Can play a similar game starting with a theory ${\mathcal T}$ with a 2-group ${\mathcal G}$

$$G = (H, A[1], \rho, \theta)$$
.

In particular, gauging it we obtain topological defects labelled by

- An *H*-set S with |S| = n;
- $c \in C^2(H, U(1)^S)$;
- $\chi \in (\hat{A})^n$ so that $\partial c = \chi_*(\widetilde{\theta}), \ h \cdot \chi(a) = \chi(h \cdot a)$;

modulo equivalence relations.

Can play a similar game starting with a theory ${\mathcal T}$ with a 2-group ${\mathcal G}$

$$G = (H, A[1], \rho, \theta)$$
.

In particular, gauging it we obtain topological defects labelled by

- An *H*-set S with |S| = n;
- $c \in C^2(H, U(1)^S)$;
- $\chi \in (\hat{A})^n$ so that $\partial c = \chi_*(\widetilde{\theta})$, $h \cdot \chi(a) = \chi(h \cdot a)$;

modulo equivalence relations.

These are the objects in 2Rep(G)! [Elgueta]

Gauging Finite 2-Groups

This is easiest to describe for ${\it G}$ a split 2-group, that is $\theta=0$

$$G = A[1] \rtimes_{\rho} H := A[1] \rtimes H$$

Then we can gauge in steps, starting from an ordinary group:

Gauging Finite Split 2-Groups

Symmetry category \mathcal{T} is essentially a higher analogue of a semi-direct-product \mathbf{Vect}_H and $\mathbf{Rep}(\hat{A})$.

Gauging Finite Split 2-Groups

Symmetry category \mathcal{T} is essentially a higher analogue of a semi-direct-product \mathbf{Vect}_H and $\mathbf{Rep}(\hat{A})$.

Simple objects in \mathcal{T}/G are labelled by:

- An *H*-orbit \mathcal{O} or equivalently a stabilizer subgroup $K \subset H$;
- A class $c \in H^2(K, U(1))$;
- A K-invariant character $\chi \in \hat{A}$.

Gauging Finite Split 2-Groups

Symmetry category \mathcal{T} is essentially a higher analogue of a semi-direct-product \mathbf{Vect}_H and $\mathbf{Rep}(\hat{A})$.

Simple objects in \mathcal{T}/G are labelled by:

- An *H*-orbit \mathcal{O} or equivalently a stabilizer subgroup $K \subset H$;
- A class $c \in H^2(K, U(1))$;
- A K-invariant character $\chi \in \hat{A}$.

Remarks:

- Fusion, 1-morphisms, composition of 1-morphisms computed as as for an ordinary group (induction-restriction);
- 1-morphisms can only exist between simple objects if and only if the respective characters lie in the same H-orbits in Â;
- ullet Condensation determined by multiplicity of χ .

Example: $(\mathbb{Z} \times \mathbb{Z})[1] \rtimes \mathbb{Z}_2$

Take

$$G = (\mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, \rho)$$

where $\mathbb{Z}_2=\{1,x\}$ acts on $\mathbb{Z}_2 imes\mathbb{Z}_2$ via

$$x\cdot (a,b):=(b,a).$$

- Denote characters of $\mathbb{Z}_2 \times \mathbb{Z}_2$ by $\{1, \chi_1, \chi_2, \chi_1\chi_2\}$;
- Label each simple object by pairs (\mathcal{O}, χ) .

Example: $(\mathbb{Z} \times \mathbb{Z})[1] \rtimes \mathbb{Z}_2$

The simple objects are

- the trivial 2-representation $\mathbf{1} = (\{1\}, (1)),$
- a 1-dimensional 2-representation $V=ig(\{1\},\,(\chi_1\chi_2)ig)$,
- ullet a 2-dimensional 2-representation $D=ig(\{1,2\},\,(\chi_1,\,\chi_2)ig)$,
- condensation defect $X = (\{1,2\}, (1, 1))$,
- condensation defect $X' = \big(\{1,2\},\, (\chi_1\chi_2,\, \chi_1\chi_2)\big)$

where condensation is determined by multiplicity of χ .

Example: $(\mathbb{Z} \times \mathbb{Z})[1] \times \mathbb{Z}_2$

Fusion

$$V \otimes V = 1$$

 $V \otimes D = D \otimes V = D$
 $V \otimes X = X'$
 $D \otimes D = X \otimes (1 \oplus V)$
 $X \otimes D = D \otimes X = D \oplus D$
 $X \otimes X = 2X$.

Only invertible simple objects are 1 and V. Fusion

$$D \otimes D = X \otimes (\mathbf{1} \oplus V)$$

already implemented at the level of simple objects.

Example: $(\mathbb{Z} \times \mathbb{Z})[1] \times \mathbb{Z}_2$

Simple Lie algebra \mathfrak{g} , associated compact, connected, simply connected Lie group ${f G}$. Automorphism 2-group

$$Z(\mathbf{G})[1] \rtimes \mathsf{Out}(\mathbf{G})$$

where

- Out(G) outer automorphisms of G
- Z(**G**)[1] center of **G**.

and the $\operatorname{Out}(\mathbf{G})$ -action outer automorphism action.

Simple Lie algebra \mathfrak{g} , associated compact, connected, simply connected Lie group ${f G}$. Automorphism 2-group

$$Z(G)[1] \rtimes Out(G)$$

where

- Out(G) outer automorphisms of G
- Z(G)[1] center of G.

and the Out(G)-action outer automorphism action.

A pure ${\bf G}$ gauge symmetry has

- A 0-form charge conjugation symmetry Out(**G**).
- ullet A 1-form symmetry $Z(\mathbf{G})$ generated by topological Gukov-Witten defects.

We can gauge this 2-group in steps. The 1-form electric symmetry is traded with a 0-form magnetic symmetry.

In general:

In general:

$\mathbf{G} = \mathrm{Spin}(4N)$ [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari]:

Conclusions and Outlook

Outlook

Aiming towards [Bartsch, Bullimore, AEVF, Pearson, to appear]

- Theory $\mathcal T$ in D dimensions with finite (D-1)-group and anomaly $\alpha \in Z^{D+1}(G,U(1));$
- Symmetry category $\mathbf{Vect}^{\alpha}(G)$;
- Gauge anomaly-free *D*-subgroup $H \subset G$;
- Resulting category $C^D(G, \alpha; H, \psi)$ where $\alpha|_H = d\psi$.

Outlook

Aiming towards [Bartsch, Bullimore, AEVF, Pearson, to appear]

- Theory $\mathcal T$ in D dimensions with finite (D-1)-group and anomaly $\alpha \in Z^{D+1}(G,U(1));$
- Symmetry category $\mathbf{Vect}^{\alpha}(G)$;
- Gauge anomaly-free D-subgroup $H \subset G$;
- Resulting category $C^D(G, \alpha; H, \psi)$ where $\alpha|_H = d\psi$.

Several expected equivalences:

- $C^D(G, \alpha; 1, 1) = (\mathbf{D} 1)\mathbf{Vect}^{\alpha}(G)$ for any (D 1)-group G.
- $C^D(G,1;G,1) = (\mathbf{D}-\mathbf{1})\mathsf{Rep}(G)$ for any (D-1)-group G.
-

Conclusions

- Higher representation theory provides an efficient framework to investigate non-intrinsically non-invertible symmetries
- This is just the beginning
- The mathematics is being developed in parallel
- This perspective is probably helpful when thinking about actions on non-topological defects (more anon)

The End