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SUSY QFT and Cohomology Theories

For SUSY QFT that flow to a sigma-model with (smooth, compact) target X ,

it has long been known [Witten,...]

{
Local ops. in Q-cohomology,

some Q s.t. Q2 = 0

}
7→
{
Some cohomology theory

H•(X )

}

For instance for a SUSY QM with target X


{Q,Q†} = H, Q2 = 0

Q-cohomology

SUSY groundstates H

 7→ H•
dR(X )
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SUSY QFT and Cohomology Theories

Of relevance today

Consider a 2d (2, 2) GLSM with a flavor symmetry T = U(1)N [Hori-Vafa, ... ]{
Q = QA

Chiral ring OaOb = cdabOd

}
7→ QH•

T (X )

Example

H•(PN) ∼= C[σ]/{σN+1 = 0}

QH•(PN) ∼= C[σ, q]/{σN+1 = q}

This can be promoted to a U(1)N -equivariant version

QH•
T (PN) ∼= C[σ, q]/

{
N+1∏
1=1

(σ +mi ) = q

}
,

N+1∑
i=1

mi = 0 .
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SUSY QFT and Cohomology Theories

One can consider an effective theory on the Coulomb branch [Nekrasov-Shatashvili, ... ]{
e

∂W̃eff (σ1,··· ,σk ,m1,··· ,mN )
∂σi = 1

}
7→ {QH•

T (X ) ring relation}

where σi ∈ tG ,C, mj ∈ tC.

Example:

Take SQED[N+1], a 2d U(1) (2, 2) gauge theory with N + 1 chiral multiplets

in the fundamental representation. It flows to a sigma-model to PN

W̃eff (σ,m1, · · · ,mN+1) = −2πiτ +
N+1∑
i=1

(σ +mi )(log(σ +mi )− 1) .

This flows to a σ-model with target X = PN

1 = e−2πiτ
N+1∏
i=1

(σ +mi ) ,
N+1∑
i=1

mi = 0 .
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SUSY QFT and Cohomology Theories

More recently [Bullimore-Zhang, Dedushenko-Nekrasov, ...] there have been attempts to extract

generalised cohomology theories from Berry connections

H(m)

Space of deformations m

Bundle E with unitary connection

|a(m)⟩ ∈ H(m) , (Am)
b
a = ⟨a| ∂m |b⟩ .

This was worked out for equivariant elliptic cohomology starting from a 3d

theory on R× Eτ .
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SUSY QFT and Cohomology Theories

Today[Ferrari-Zhang]: Given a Kähler manifold X with torus isometries T , one can

obtain an analytic object (a generalised periodic monopole) by studying the

Berry connection for a 2d (2, 2) GLSMs on S1
L × R with target X .

{Kähler manifolds} → {Generalised periodic monopoles}

This analytic object encodes data of different kinds of (generalised)

cohomology theories.

Berry connections

QH•
T (X ) K•

T (X )

Spectral data I Spectral data II

Remark: I will assume T has isolated massive vacua, and the target X is

equivariantly formal (GKM). Some of these assumptions can probably be lifted.
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Set-up

Consider a theory T with a rank-one abelian flavor symmetry T = U(1) on a

cylinder

L

We can turn on

• A complex twisted mass w = w1 + iw2, (w1,w2) ∈ R2

• a holonomy t ∈ R/ZL =: S1
L for T .

Space of deformations

(t,w) are coordinates on

M := S1 × R2 ,

the space of deformation parameters.
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Set-up

Let H be the hamiltonian along R ⊂ R× S1
L .

L
H

Groundstates

Groundstates of H are states |α⟩ s.t. H |α⟩ = 0. They form a bundle

E → R2 × S1 := M .

The bundle is endowed with a U(N) connection D = (Dt ,Dw ,Dw̄ ) and a Higgs

field ϕ s.t. the Bogomolny equations hold [Cecotti-Vafa,Cecotti-Gaiotto-Vafa,Tong et al.,...]

⋆Dϕ = F ⇒

 [Dw̄ ,Dt − iϕ] = [Dw ,Dt + iϕ = 0]

2[Dw ,Dw̄ ] = i [Dt , ϕ]
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Set-up

Asymptotics

Asymptotically as |w | → ∞, the following can be proved [Ferrari-Zhang]:

• The bundle E splits as a smooth vector bundle into a sum of line bundles

labelled by isolated massive vacua α

E =
⊕
α

Eα

• The combination At + iϕ can be computed at each vacuum α in terms of

W̃eff evaluated at α

At + iϕ ∼ e−2i
∂W̃eff
∂w |α

This implies that the monopoles are of so-called Cherkis-Kapustin type; in

particular, they tend to copies of U(1) Dirac monopoles as |w | → ∞
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Set-up

M is endowed with a P1 family of mini-complex structures [Mochizuki]. More

concretely, consider

(t0, β0) :=
1

1 + |λ|2
(
(1− |λ|2)t + 2Im(λw̄),w + λ2w̄ + 2iλt

)
.

where λ is a “twistor parameter” on a C chart of P1. Intuitively, one can keep

in mind the following:

×

t0(λ ̸= 0) β0(λ ̸= 0)

×

t0(λ = 0) β0(λ = 0)

• λ = 0: M0 ∼= S1
t × Cw

• |λ| = 1: Mλ ∼= Rt0 × C∗
β0

11



Set-up

Physically, consider

Qλ :=
1√

1 + λ2

(
QA + λQ̄A

)
λ = 0, QA

|λ| = 1,Q2
λ ∼ ∂2

Deformations

We have

{Qλ,Q
†
λ} = {Q̄λ,Q

†
λ} = 2H

{Qλ, Q̄λ} =
1− |λ|2

1 + |λ|2 (2i∂2) + 2t0 · JT

Q2
λ =

2iλ∂2
1 + |λ|2 − iβ0 · JT

Thus, there is a P1-family of SQMs adapted to the mini-complex coordinates.
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Set-up

Mochizuki defines a mini-holomorphic structure on the bundle

E → Mλ

In particular, Et0 := E |{t0}×C has Dolbeault operator Dβ̄0
. Moreover, the

Bogomolngy equations imply

[Dt0 + iϕ,Dβ̄0
] = 0 .

Mini-holomorphic ground states [Ferrari-Zhang (see Gaiotto)]

The operators

∇t0 := Dt0 + iϕ , ∇β0 := Dβ̄0

descend to Qλ cohomology

{∇t0 ,Qλ} = {∇β0 ,Qλ} = 0

The supersymmetric ground states viewed as states in Qλ-cohomology have

the structure of a mini-holomoprhic bundle.
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Spectral Data I



Spectral Data I, λ = 0

Recall Mλ=0 ∼= S1 × C and define

V := H0(Cw ,E
0)

Parallel transport along ∇t0 defines a C(w)-linear automorphism

F : H0(Cw ,E
0)

=:V

→ H0(Cw ,E
L)

∼=V

Formally, (F ,V ) is a 0-difference C(w)-module [Mochizuki]

Mochizuki’s correspondence

There is a 1:1 correspondence between (polystable , parabolic , ...) difference

modules and periodic Cherkis-Kapustin monopoles.
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Spectral Data I, λ = 0

Moreover one can extract the spectral curve [Cherkis-Kapustin]

L := {(p,w) ∈ C∗ × C | det(p − F (w)) = 0} .

This is a Lagrangian subvariety of C∗ × C (symplectic form Ω = dp
p
∧ dw)

Spectral curve and quantum cohomology [Ferrari-Zhang]

Suppose that T flows to a NLSM with GKM target X . Then V is generated

by elements in the quantum cohomology Oa

|a⟩ := Oa |0⟩ .

The CK spectral curve for its Berry connection is a “momentum space”

representation of

Spec(QH•
T (X )) .

More precisely, (p,w) form a 3d pure gauge theory Coulomb branch algebra

that acts on QH•
T (X ), and the spectral curve determines the support of the

corresponding sheaf [Ferrari-Zhang, based on Teleman and Bullimore, Dimofte, Gaiotto, Hilburn]
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Spectral Data I, λ = 0

Why and how to compute?

Quick intuitive argument: we can compute the L → ∞ limit (a.k.a. R2) the

ground states are in correspondence with the massive vacua of the theory,

which are given by the Bethe equations

e
∂W̃eff (σ1,··· ,σk ,w)

∂σi = 1 , ∀i ∈ {1, · · · , k} .

The action of the operator ∇t0 becomes diagonal and its holonomies at a given

vacuum can be computed to be (c.f. previous asymptotics)

p = e
−2i∂W̃eff (σ1,··· ,σk ,w)

∂w |σi=vacua

Thus we are left with simultaneous solutions to the equations{
e

∂W̃eff (σ1,··· ,σk ,w)
∂σi = 1 , p = e−2i

∂W̃eff (σ1,··· ,σk ,w)
∂w

}
, i ∈ {1, · · · , k} .
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Spectral Data I, λ = 0

In terms of 3d Coulob branches:{
e

∂W̃eff
∂σi = 1 , v−| = e−2i

∂W̃eff
∂ϕ

}
, i ∈ {1, · · · , k} .

O2d

Dm : φ| = m N ⋄ T2d

O3d

T3d

The spectral variety is the image of N ⋄ T2d !

17



Example

In the SQED[2] example, X = P1 and we have for m = −2iw

1 = e
∂W̃eff
∂σ = e−2πiτ ′

(σ +m)(σ −m)

together with

p = e
∂W̃eff
∂m ⇒ σ =

m(p + 1)

p − 1
,

This gives

p2 − 2(1 + 2e−2πiτ ′
m2)p + 1 = 0

or (
p −

√
m2 + e2πiτ ′ +m√
m2 + e2πiτ ′ −m

)(
p −

√
m2 + e2πiτ ′ −m√
m2 + e2πiτ ′ +m

)
= 0 .

This is the spectral curve for a smooth SU(2) monopole [Cherkis-Kapustin].
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Spectral Data I, λ ̸= 0

Recall that we are considering a P1 worth of supercharges Qλ, and that these

induce mini-holomorphic structures on the space of supersymmetric ground

states. Consider

V := H0(Cβ0 ,E
0 := E |t0=0)

Let F be parallel transport along ∇t0 . Then

F := Φ∗ ◦ F : H0(Cβ0 ,E
0)

=:V

7→ H0(Cβ0 ,Φ
∗E L)

∼=V

where Φ∗ is the pull-back by a β0 7→ β0 − 2iλL. Thus, V is a 2λiL-difference

C(β0)-module

F(g(β0) · s) = Φ∗(g(β0)) · Fs

Thus, we can extract difference modules from Berry connections.

19
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Spectral Data I, λ ̸= 0

In fact, Mochizuki proves something along the following lines

Mochikuzi’s correspondence [Mochizuki]

There is a 1:1 correspondence between suitable 2iλL-difference

C(β0)-modules and Cherkis-Kapustin monopoles

• This is quite deep and subtle. It is the culmination of decades of work on

Hitchin-Kobayashi correspondences for monopoles

• The modules are endowed with structure that keeps track of the location

of the singularities as well as the asymptotic behaviour at infinity and

stability conditions

• Conditions at infinity require some adjustments to the mini-complex charts
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Spectral Data I, λ ̸= 0

Physically, we can consider the following configuration

L

H

D

Qλ,Q
†
λ preserved

This will formally produce a state |D⟩ in the QFT that is not necessarily a

normalisable ground state (and therefore not an element of E). However by tt∗

it generates a flat section of the Lax connection [Hori-Iqbal-Vafa]

∇t0 |D⟩ = ∇β̄0
|D⟩ = 0 .

Thus, we expect

F |D⟩ = |D⟩ .
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Spectral Data I, λ ̸= 0

In [Ferrari-Zhang] we claim that this implies difference equations for so-called brane

amplitudes. In fact, we can expand |D(t0 = 0)⟩ in a (λ-dependent) basis for

E 0, say |aλ⟩

|D(t0 = 0)⟩ ⇒
∑
aλ

⟨aλ|D⟩ |aλ⟩ .

where ⟨aλ|D⟩ := ⟨aλ|D(t0 = 0)⟩.

From F |D⟩ = |D⟩ we can derive an equation of the form

Difference equation for brane amplitude

For any basis |aλ⟩ there is an equation

p̂ ⟨aλ|D⟩ = G(β0)
b
a ⟨bλ|D⟩

where p̂ := Φ∗ is a shift operator by 2iλL, and G(β0)
b
a is some matrix with

entries in C(β0).

22
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Spectral Data I, λ ̸= 0

Moreover, we can show that this matrix difference equation quantises the

spectral curve of the monopole, which is

L := {(p,w) ∈ C∗ × C | det(p − F (w)) = 0} .

In fact, the operators (p̂, β̂0 := β0·) satisfying

p̂β̂0 = β̂0p̂ + 2iλLp̂

are quantised versions of the operators (p,w), and we have

Curve quantisation

As λ→ 0, we have

lim
λ→0

L(G b
a (β0), β0) = 0 ,

that is the eigenvalues of the matrix G b
a (β0) satisfy the spectral curve

equations.
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Spectral Data I, λ ̸= 0

Why?

We can take a basis |aλ⟩ that in the λ→ 0 limit reduces to the insertion of a

chiral ring operator Oa at the tip of an A-twisted cigar

L
H

Oa

We can then consider thimble branes |Dα⟩, labelled by vacua α, which have

known limiting behaviour. Combining these two things we obtain

lim
λ→0

(Φ∗
1 )

−1 ⟨aλ|Dα⟩
⟨1|Dα⟩ = e

−2i
∂W

(α)
eff

∂wi Oa|α.

However, it is not straightforward to check these results directly (that is, to

derive the difference equations in examples).
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Spectral Data I, λ ̸= 0

There is however another limit we can take, the so-called conformal limit

limc : λ→ 0, L → 0,
λ

L
= ϵ.

It is expected that in this limit, brane amplitudes degenerate into hemisphere

partition functions

limc ⟨aλ|D⟩ = ZD [Oa,m − ϵx ].

1/ϵ

Oa

These are exactly calculable via localisation [Hori et al., ...]. The limit preserves the

form of the difference equations

p̂ZD [Oa,m] = ZD [Oa,m + ϵ] = G̃ b
a (m, ϵ)ZD [Ob,m] ,

as well as the fact that in the ϵ→ 0 we should recover the classical curve. This

appears to be new, and one can prove that it works! [Bonelli-Sciarappa-Tanzini-Vasko?]

25



Spectral Data I, λ ̸= 0

In terms of the sandwich construction:

Dm : φ| = m N ⋄ T2d

Ô3d

ϵ

Oa

α

T3d

Left:

⟨Dm| v̂− |N ⋄ T2d, α,Oa⟩ = p̂Zα[Oa,m].

Right:

⟨Dm| v̂− |N ⋄ T2d, α,Oa⟩ =
∑
b

G̃(m, ϵ)ab Zα[Ob,m].
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Spectral Data I, λ ̸= 0

Example

Let us consider the SQED[2] example

ZD1 [1] =

∮
C1

dσ

2πiϵ
e−

2πiστ

Γ
[σ +m

ϵ

]
Γ
[σ −m

ϵ

]
,

ZD1 [σ] =

∮
C1

dσ

2πiϵ
e−

2πiστ
ϵ Γ

[σ +m

ϵ

]
Γ
[σ −m

ϵ

]
σ.

By means of an explicit computation we can for instance obtain[
p̂2 + 2

(
1 + ϵ

2m

1 + ϵ
2m

+ (2m + 3ϵ)(m + ϵ)e−2πiτ ′
)
p̂ +

1 + 3ϵ
2m

1 + ϵ
2m

]
ZD1 [1] = 0 ,

which clearly is a quantum deformation of

p2 − 2(1 + 2e−2πiτ ′
m2)p + 1 = 0 .
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Spectral Data II

Consider for simplicity λ = 1, such that

Mλ = C∗ × R .

Qλ is then a supercharge that squares to rotations of S1
L , and its cohomology is

expected to be related to the equivariant complex K-theory KT (X ). Under our

assumption, this takes the schematic form (Kirwan surjectivity) [Kirwan]

Spec(KT (X )) =

 ⊔
α∈XT

C∗

 /∆ .

In [Ferrari-Zhang], we claim that a second kind of spectral data for the Berry

connection is in fact related to KT (X ).

Remark: Qλ is a dimensional reduction of the supercharge used to extract the

elliptic cohomology variety of X from the Berry connection of a 3d N = 2 QFT

on R× Eτ with Higgs branch X [Bullimore-Zhang,Dedushenko-Nekrasov].
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on R× Eτ with Higgs branch X [Bullimore-Zhang,Dedushenko-Nekrasov].
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Spectral Data II

Consider for simplicity SQED[2], so that E has of rank 2, and denote

coordinates on C∗ × R by (z , z̄ ,mR).

×

C∗

R

We get holomorphic bundles EmR on C∗, and the Bogomolny equations imply

again that we can parallel transport holomorphic sections along mR

[∇mR ,∇z̄ ] = 0 .
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Spectral Data II

At mR → ∞ there is a filtration 0 ⊂ L+ ⊂ E determined by sections that decay

exponentially fast.

Similarly, at mR → −∞ there is a filtration 0 ⊂ L− ⊂ E determined by

sections that decay exponentially fast. We can write

ψ−(mR, z , z̄) = f (z)ψ(mR, z , z̄) + g(z)ψ+(mR, z , z̄)

The locus f (z) = 0 supports “boundstates” –the support over which certain

sections decay exponentially fast in both directions.

Remark: In a classic paper Hitchin [Hitchin] used a similar method to encode

SU(2) monopole solutions on R3 in terms of a spectral curve on its twistor

space of lines TS2
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Spectral Data II

KT (P1) from Berry connections [Ferrari-Zhang]

We have that

Spec(KT (P1)) = (C∗ ⊔ C∗) /(x1 = x2 = 1)

and so we can reconstruct KT (P1) from the spectral data of the Berry

connection. The same holds for GKM varieties X .

×

C∗

R

C∗

C∗

Remark It is expected [Kontsevich-Soibelman] that this kind of spectral data (albeit with

more intricate structures, such as filtrations at 0,∞ ⊂ C∗ ) is also sufficient to

reconstruct the monopole solution.
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Conclusion and future directions



Conclusions and future directions

• One can assign generalised periodic monopoles to to Kähler manifolds X

(Berry connections for 2d (2, 2) sigma-models with target X ); the map by

itself is interesting and poorly understood

• Different kinds of spectral data for these analytic objects are related to

1. The action of a pure Coulomb branch algebra on QHT (X ) that can be

related to classic work [Teleman]

2. The complex K-theory variety of KT (X )

• In the conformal limit we obtain verifiable difference equations for vortex

partition functions

• There should be a Riemann-Hilbert correspondence between the two kinds

of spectral data [Kontsevich-Soibelman], and the connection to cohomology remains

to be investigated

• All of these statements can be lifted to 3d, where spectral data for doubly

periodic monopoles arising from physics should be realted to QKT (X ) and

elliptic cohomology
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Thank you for your attention!
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